Modeling Battery Sizing Optimization Algorithms for Various Use Cases

#### Semanur Sancar

Electrical & Electronics Engineering Ozyegin University Istanbul, Turkey semanur.sancar@ozu.edu.tr



## Motivation

Developing battery sizing algorithms with a common methodology for consumer, producer and prosumer. Increasing the accuracy of battery sizing algorithms with generation and consumption estimation algorithms.

> ----ÖZYEĞİN---------UNIVERSITY---









#### Common formulas

Prosumer wo Selling

$$\min\left\{ \left( \sum_{t} g_{t} . \mathcal{TOU}_{t} . \Delta T \right) \right\}$$
(30)  

$$subject \ to \ (1) - (10)$$
  

$$s_{t} + g_{t}^{buy} + d_{t} . \eta^{discharge} = \mathcal{D}_{t} + c_{t} , \quad \forall t$$
(31)  

$$0 \le g_{t}^{buy} , \quad \forall t$$
(32)  

$$g_{t}^{buy} \le \mathcal{G} , \quad \forall t$$
(33)

#### Consumer tou

$$\min \left\{ \sum_{t} \mathcal{G}_{t}^{buy} . \mathcal{T} \mathcal{O} U_{t} . \Delta T \right\}$$

$$subject to (1) - (10)$$

$$\mathcal{G}_{t}^{buy} + \mathcal{d}_{t} . \eta^{discharge} = \mathcal{D}_{t} + c_{t} , \quad \forall t$$

$$0 \leq \mathcal{G}_{t}^{buy} , \quad \forall t$$

$$\mathcal{G}_{t}^{buy} \leq \mathcal{G} , \quad \forall t$$

### Producer EMP

$$\min \left\{ -\left(\sum_{t} g_{t}^{sell} . DAM_{t} . \Delta T\right)\right\}$$

$$subject to (1) - (10)$$

$$s_{t} + d_{t} . \eta^{discharge} = g_{t}^{sell} + c_{t} , \quad \forall t$$

$$0 \leq g_{t}^{sell} , \quad \forall t$$

$$g_{t}^{sell} \leq G , \quad \forall t$$

#### Prosumer w Selling

| $\min\left\{\left(\sum_{t} g_{t} . \mathcal{T} \mathcal{O} U_{t} . \Delta T - \sum_{t} g_{t}^{sell} . \mathcal{T} \mathcal{O} U_{t} . \Delta T\right)\right\}$ | (30) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| <u>subject to</u> (1) – (10)                                                                                                                                   |      |
| $s_t + g_t^{buy} + d_t \cdot \eta^{discharge} = D_t + g_t^{sell} + c_t$ , $\forall t$                                                                          | (31) |
| $0 \leq g_t^{buy}$ , $orall t$                                                                                                                                | (32) |
| $g_t^{buy} \leq \mathcal{G}$ , $orall t$                                                                                                                      | (33) |
| $0 \leq arphi_t^{sell}$ , $orall t$                                                                                                                           | (34) |
| $g_t^{sell} \leq \mathcal{G}$ , $\forall t$                                                                                                                    | (35) |
|                                                                                                                                                                |      |

#### tou

(11)

(12)

(13)

(14)

(19)

(20)

(21)

(22)

# $\min\left\{\sum_{t} \left(g_{t}^{buy} \cdot \mathcal{T}OU_{t} \cdot \Delta T + P_{k} \cdot \left(\frac{g_{t}^{buy}}{\mathcal{G}}\right)^{2}\right)\right\}$ $\frac{subject\ to\ (1) - (10)}{g_{t}^{buy} + d_{t} \cdot \eta^{discharge}} = \mathcal{D}_{t} + c_{t} \quad , \quad \forall t$

- $0 \le g_t^{buy} \quad , \quad \forall t \tag{17}$ 
  - $g_t^{buy} \leq \mathcal{G}$  ,  $\forall t$  (18)

(15)

(16)

#### Producer LPA

Consumer tou + tr loss

## $\min \left\{ -\left(\sum_{t} g_{t}^{sell} \cdot \mathcal{C} \cdot \Delta T\right) \right\}$ (23) subject to (1) - (10) $s_{t} + d_{t} \cdot \eta^{discharge} = g_{t}^{sell} + c_{t} , \quad \forall t$ (24) $0 \leq g_{t}^{sell} , \quad \forall t$ (25) $g_{t}^{sell} \leq LPA , \quad \forall t$ (26)







-UNIVERSITY

## Result - 1 - Consumer TOU

| Profile No. | Battery<br>Energy<br>Capacity<br>(kWh) | Battery<br>Power<br>Capacity<br>(kW) | Saving (TL-<br>%) | Max<br>Demand<br>(kW) | Power<br>Contract<br>(kW) | Battery<br>Energy<br>Capacity /<br>Total Energy<br>Demand (%) | Mean<br>Power<br>Demand /<br>Battery<br>Power<br>Capacity (%) |
|-------------|----------------------------------------|--------------------------------------|-------------------|-----------------------|---------------------------|---------------------------------------------------------------|---------------------------------------------------------------|
| 1           | 506                                    | 61                                   | 39                | 49.14                 | 65                        | 9                                                             | 27                                                            |
| 2           | 407                                    | 70                                   | 38                | 38.21                 | 75                        | 4                                                             | 20                                                            |
| 3           | 266                                    | 45                                   | 38                | 20.67                 | 50                        | 4                                                             | 23                                                            |
| 4           | 3,034                                  | 359                                  | 42                | 199.23                | 400                       | 6                                                             | 20                                                            |
| 5           | 43,035                                 | 760                                  | 28                | 614.29                | 1000                      | 2                                                             | 53                                                            |

 Consumers need a battery with an energy capacity of 5% of their monthly total energy consumption for bill management.

- The battery power capacity of 30% of the average power demand is sufficient.
- Bill earnings were found to be 37% per month in TL.



## Result - 2 – Consumer TOU + TR LOSS

| Profile No. | Use-Case | Battery<br>Energy<br>Capacity<br>(kWh) | Battery<br>Power<br>Capacity<br>(kW) | Total<br>Transformer<br>Loss<br>(Before) (TL) | Total<br>Transformer<br>Loss (After)<br>(TL) |
|-------------|----------|----------------------------------------|--------------------------------------|-----------------------------------------------|----------------------------------------------|
| 4           | 1        | 3,034                                  | 359                                  | 1,500.00                                      | 1,602.56                                     |
| 4           | 2        | 4,196                                  | 281                                  | 1,500.00                                      | ↓<br>1,553.18                                |
| 5           | 1        | 43,035                                 | 760                                  | 1,255.63                                      | 1,436.81                                     |
| 5           | 2        | 9,774                                  | 760                                  | 1,255.63                                      | 1,356.99                                     |

- The increase in transformer losses has been reduced by **50%**.
- In Consumer's 1st model, the battery can be charged unlimitedly to meet all peak consumption. However, both peaks in power consumption and zero consumption cause the transformer to move away from its efficient working area. In this case, the charging capacity of the battery is limited.



## Result - 3 – Producer

|                |                            |                  | LPA                                     |                                        | РРА                                  |                                        | EMP                                  |                                        | N/XSA                                |           |
|----------------|----------------------------|------------------|-----------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|-----------|
| Profile<br>No. | Installed<br>Power<br>(kW) | Max Gen.<br>(kW) | Total<br>Energy<br>Generati<br>on (kWh) | Battery<br>Energy<br>Capacity<br>(kWh) | Battery<br>Power<br>Capacity<br>(kW) | Battery<br>Energy<br>Capacity<br>(kWh) | Battery<br>Power<br>Capacity<br>(kW) | Battery<br>Energy<br>Capacity<br>(kWh) | Battery<br>Power<br>Capacity<br>(kW) | ENV       |
| 6              | 10                         | 5                | 717                                     | 22                                     | 4                                    | 9                                      | 3                                    | 250                                    | 50                                   | N North   |
| 7              | 150                        | 104              | 12,007                                  | 569                                    | 113                                  | 434                                    | 59                                   | 800                                    | 160                                  | A LIVIN K |
| 8              | 500                        | 343              | 39,360                                  | 1,713                                  | 342                                  | 1,388                                  | 192                                  | 3,150                                  | 630                                  | ANNA I    |
| 9              | 1,000                      | 707              | 80,973                                  | 3,714                                  | 742                                  | 3,404                                  | 407                                  | 6,250                                  | 1,250                                |           |
| 10             | 5,000                      | 4,763            | 717,232                                 | 22,857                                 | 4,571                                | 228,413                                | 3,263                                | 31,250                                 | 6,250                                |           |

The highest sizing recommendations were observed in the EMP scenario. In the EMP model, the estimated 1-month dynamic electricity market price is used. Since the goal was to maximize revenue, the optimization algorithm considered all 1-month periods holistically and made large volume sales in the most expensive few periods. It stored plenty of energy for big electricity sales.

An extreme battery energy capacity increase was observed for profile 10 in the PPA model. There is a minimum electricity sales agreement in the PPA model. Profile 10 has the largest minimum sales agreement due to its installed power. In order not to pay more penalty, the optimization algorithm suggested the energy storage capacity higher than the others.



## Result - 4 – Prosumer

|                |                            |                           | wo selling                             |                                      |                  | w selling                              |                                      |                  |  |
|----------------|----------------------------|---------------------------|----------------------------------------|--------------------------------------|------------------|----------------------------------------|--------------------------------------|------------------|--|
| Profile<br>No. | Installed<br>Power<br>(kW) | Power<br>Contract<br>(kW) | Battery<br>Energy<br>Capacity<br>(kWh) | Battery<br>Power<br>Capacity<br>(kW) | Saving<br>(TL-%) | Battery<br>Energy<br>Capacity<br>(kWh) | Battery<br>Power<br>Capacity<br>(kW) | Saving<br>(TL-%) |  |
| 11             | 10                         | 400                       | 2,996                                  | 359                                  | 42.02037         | 2,996                                  | 359                                  | 42.02037         |  |
| 12             | 10                         | 30                        | 200                                    | 26                                   | 35.15218         | 200                                    | 26                                   | 35.1361          |  |
| 13             | 150                        | 400                       | 2,834                                  | 359                                  | 43.1613          | 2,836                                  | 359                                  | 42.30986         |  |
| 14             | 500                        | 400                       | 4775                                   | 357                                  | 71.08453         | 4,775                                  | 357                                  | 20.61097         |  |

- There were no major changes in recommended battery sizes between scenarios.
- The reason why there is no change in bill saving is the equal determination of the purchase and sale price.
- The generation of profile 14, which has more generation capacity than its consumption, would be wasted if there was no sale to the grid. So in the scenario where there is no electricity sales to the grid, the battery has a big impact on bill saving.

# Key Findings - 1





# Key Findings - 2

For prosumers, the inclusion of the battery in the system ensures 100% selfconsumption as long as the mains electricity purchase price is not high.

Battery power capacities are generally affected by the agreement power limits with the grid. At this point, both the producer and the consumer must make an agreement with the grid by correctly estimating their electricity purchase-sale potential.



Self-sufficiency with battery may be negative for prosumers. The reason for this is the battery chargedischarge efficiency.

It is possible to establish selfsufficient systems with an optimal generation level. Here the sizing problem of the energy source is important.



## **Future Works**





# Thank You !

Any Question?

