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ABSTRACT

Battery energy storage systems (BESS) increase energy controllability and grid

flexibility. One of the most important issues in BESS investments is optimal

BESS sizing for various needs. In this thesis, it is aimed to develop an optimal

battery sizing methodology for the consumer, producer and prosumer. By using

Mixed-Integer Linear Programming and Mixed-Integer Quadratic Programming

methods, optimal battery sizing algorithms that can be used by all end-user types

for different purposes were developed. The advantage of this mathematical mod-

eling is that it can be adapted for different scenario constraints with minor mod-

ifications. Various estimation algorithms were used to get more realistic results

from the optimization algorithms for the future. Artificial neural network (ANN),

deep neural network (DNN), and Long-Short Term Memory models were used to

predict generation, consumption, and electricity market data. The importance

of estimation algorithms in the smart grid ecosystem was emphasized and it was

aimed to predict the needs for the future. Prediction methods and optimization

algorithms were developed in the Python environment. Pandas, numpy, sklearn,

keras, cvxpy libraries were actively used. It is hoped that it will be beneficial for

the investments to be made within the scope of the smart grid concept.
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ÖZETÇE

Batarya enerji depolama sistemleri (BESS), enerjinin kontrol edilebilirliğini ve

şebeke esnekliğini arttırmaktadır. BESS yatırımlarındaki en önemli konulardan

bir tanesi çeşitli ihtiyaçlara yönelik olarak optimal BESS boyutlandırmasıdır. Bu

tezde tüketici, üretici ve üreten-tüketici (prosumer) için optimal batarya boyut-

landırma metodolojisi geliştirmek hedeflenmiştir. Karmaşık Tamsayılı Lineer Pro-

gramlama ve Karmaşık Tamsayılı Kuadratik Programlama yöntemleri kullanılarak

tüm son kullanıcı tiplerinin farklı amaçlar ile kullanabileceği optimal batarya

boyutlandırma algoritmaları geliştirilmiştir. Bu matematiksel modellemenin avan-

tajı küçük değişiklikler ile farklı senaryo kısıtları için uyarlanabilmesidir. Op-

timizasyon algoritmalarından geleceğe yönelik daha gerçekçi sonuçlar alabilmek

için çeşitli tahmin algoritmaları kullanılmıştır. Üretim, tüketim, ve elektrik market

verilerini tahmin edebilmek için yapay sinir ağları (ANN), derin sinir ağları (DNN),

ve Uzun-Kısa Süreli Bellek modelleri kullanıldı. Tahminleme algoritmaları ile hem

akıllı şebeke ekosisteminde tahminleme algoritmalarının önemi vurgulanmış hem

de geleceğe yönelik ihtiyaçların tahmin edilebilmesi hedeflenmiştir. Tahminleme

yöntemleri ve optimizasyon algoritmaları Python ortamında geliştirilmiştir. Pan-

das, numpy, sklearn, keras, cvxpy kütüphaneleri aktif olarak kullanılmıştır. Akıllı

şebeke konsepti kapsamında yapılacak yatırımlar için faydalı bir çalışma olması

umulmaktadır.
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CHAPTER I

INTRODUCTION

The world continues to talk about concepts such as industry 4.0, web 3.0, hu-

manoid robots, and the metaverse. While developing technologies continue to

bring unprecedented habits into our lives, they also increase energy consumption.

Issues such as the indispensability of electrical energy and the internet and the

importance of the continuity of databases have made the security of supply in

electrical energy even more important. In this context, the increasing importance

of grid-size batteries has been a source of motivation for this study. In this section,

the increasing importance of grid-size batteries, the contribution of the thesis to

the literature in battery sizing and the scope of the thesis are explained in detail.

1.1 Motivation

When the global climate crisis emerged with the increasing energy demand, renew-

able energy systems (RESs) came to the fore. The increase in production facilities

originating from RES has caused us to encounter the negative aspects of RESs.

Unlike conventional electricity generation facilities, RESs has a nature-based inter-

mittent generation profile. In networks where RESs production increases, produc-

tion cannot be increased by central control as soon as demand increases. Energy

storage systems (ESSs) are the only way to flexibly steer RESs to meet demand.

Buying incentive mechanisms have been established in many countries of the

world for RESs investors. Incentives are valid until a certain date. In the post-

incentive process, generation facility investors will start to sell their RES-sourced

generation as part of the electricity market. At this point, there are opportunities

to respond to the competition in the electricity market with ESS. Along with the

climate crisis, political crises have also led to the discussion of the sources of elec-

trical energy to a large extent. Boycotts or rising prices for energy force countries
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to establish self-sufficient systems. Likewise, each consumer is individually affected

by increasing energy prices. In this respect, consumers as well as producers need

smart energy management systems. Intelligent energy management systems can

provide bill management sensitive to time-of-use tariffs. Consumers’ orientation

to the establishment of distributed energy sources (DERs) again with incentives

and motivations for self-sufficiency brings us the concept of prosumer. Prosumers

also need ESS in order to use their RES resources in the most efficient way. ESSs,

which are used for different purposes by both production and consumption and

operators, also contribute to grid resiliency.

While the importance and investments of battery energy storage systems (BESSs)

have increased, optimal sizing has become one of the most important issues. Al-

though BESSs investment costs are on a downward trend over time, they still have

high investment costs. The biggest factor affecting the cost of BESS investment

is of course the size of BESS. Basically, sizing is aimed both to meet the needs

of the user and not to cause economic waste. In this study, it was aimed to de-

velop optimization algorithms that enable the recommendation of adequate BESS

dimensions within the specified use-cases. However, contributions to investment

regulations will be proposed to prevent wasteful investments.

1.2 Contributions of Thesis

The contributions of this thesis to the literature can be listed as follows.

i) Historical data is generally used to implement the sizing and power dispatch

optimization models. Realizing the forward estimations of production, consump-

tion and electricity market price with NN algorithms allows this study to try a

more realistic approach.

ii) Battery sizing optimization algorithms were combined in a single framework.

An easy-to-modify algorithm was created that can be used on the consumer, pro-

ducer, and prosumer sides.

iii) A total of 7 different sizing use-cases was created for the different needs
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of the consumer, producer and prosumer, where sometimes the objective function

changes and sometimes the constraints change.

iv) The maximum size of the battery required for the investment is found with

the developed algorithms. Optimally sized battery investment is recommended

that maximizes revenue.

1.3 Scope

Within the scope of the thesis, first of all, the smart grid concept will be explained

in Chapter II. The roles of consumer, prosumer, producer and grid-size batteries,

which are the components of the smart grid concept, and their relations with the

grid will be examined in detail.

In Chapter III, machine learning methods to be used for prediction studies

will be introduced. These methods include artificial neural networks (ANN), deep

neural networks (DNN), and Long Short-Term Memory (LSTM).

Prediction algorithms developed using neural network (NN) models introduced

in Chapter III will be explained in Chapter IV. In the subsections divided as

consumer, producer, prosumer and electric market, the dataset used for train

will be introduced, model parameters will be explained and model results will

be displayed. The results of these estimation modules will be used as inputs to

battery sizing optimization models.

Mathematical programming methods used for battery sizing optimization al-

gorithms will be introduced in Chapter V. Chapter V will include linear program-

ming, quadratic programming, mixed-integer programming.

Chapter VI includes battery sizing algorithms, model inputs and use-case stud-

ies for consumer, producer and prosumer. Modified algorithms will be shown for 7

different use-cases designed for different needs of end-users. The results of use-case

studies will be evaluated as a result of these algorithms working with the inputs

from the estimation modules.
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Finally, the contribution of the battery sizing methodology developed for dif-

ferent end-users investments will be discussed for battery integrations in Chapter

VII.
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CHAPTER II

SMART GRID CONCEPT

With the developing technology and increasing industrial need, electricity supply

is becoming a critical issue. Electrical energy production is in a radical change

within the scope of precautionary decisions taken by states and regions with global

warming [18, 19]. Renewable Energy Systems (RESs) play an important role in

this change. Suppression of treaties and laws increases the demand for RESs,

however, RES installation costs are getting cheaper year by year [20]. According

to IRENA RES reports [1–3], the increase in RESs worldwide by years is shown

in Figure 1. Along with historical data, future prediction of RES installations are

also seen. In the light of these data, it is expected that the global installed RES

power, which is 2802 GW in 2020, will be 6293 GW in 2030.

Figure 1: RES Installed Capacities vs RES Installation Costs [1–3]

There are challenges that these expected radical RES increases will create in

the grid [21]. In particular, the uncertain generation structure of RESs creates a
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serious electricity supply challenge [22]. This challenge increases the importance

of energy storage systems (ESSs) and estimation algorithms. A rapid increase is

expected in the grid integration of elements such as ESSs [23] and decision support

mechanisms [24].

In addition to the increase in the installed capacity of RES, there are different

factors that will negatively affect the electricity supply. Increasing natural disas-

ters with global warming [25] and the aging structure of grids [26] have also caused

significant blackouts and brownouts recently [27]. These cuts cause huge financial

losses [28]. All this increasing need for grid resiliency [29] and reliability [30] in

the developing world creates a necessity for conventional grids to change [31].

With the help of communication technologies, which have made important

developments in recent years, the concept of smart grid has started to be dis-

cussed [32]. The general structure of the smart grid is visualized in Figure 2 [4].

According to this structure, one of the most important components is the commu-

nication infrastructure. The communication infrastructure connects all the players

in the electricity supply. The data obtained from smart meters and sensors [33], the

status of production facilities [34], operational processes in transmission [35] and

distribution [36], and the electricity market participation [37] can be monitored [38]

and managed [39] from an operation center with this connection. The problems

caused by the uncertainty in consumption [40] and RES-based distributed genera-

tion resources (DERs) [41] are minimized by monitoring and forecasting methods.

This infrastructure, which is established for demand-supply balance and includes

intelligent decision support mechanisms, increases grid efficiency [42] as well as

grid resiliency [43] and reliability [44]. Due to the importance given to DERs [45]

and fast frequency regulating systems [46], grid losses can be reduced considerably.

Another important issue in the smart grid is the grid infrastructure that al-

lows bidirectional power flow [47]. It is expected that a new concept will emerge

in the distribution system with the increase of DERs [48] and ESSs [49] at the

consumer level with the incentive mechanisms developed by the states. For now,
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Figure 2: Smart Grid General Concept (adopted from [4] )

there is no structure in Turkey and in many parts of the world that allows the

end-user to recharge electricity to the grid. However, increasing consumer-based

roof top solar systems [50], ESSs [51], and electric vehicle (EV)/mobile power

sources [52–54] potential is expected to cause the grid to change its structure

bidirectionally. This structure also paves the way for current discussions such as

demand side management (DSM) [55], the vehicle to grid concept of EVs [56],

electricity cooperatives [57], local electricity markets [58], and peer to peer (P2P)

electricity sales [59].

In the continuation of this section, the relationship of consumer, producer, and

prosumer components with the grid will be discussed in more detail within the

scope of the smart grid concept. In addition, the increasing role and demand of

battery ESSs (BESSs) in the grid, their usage areas, BESS and grid integration

concepts will be mentioned.
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2.1 Consumer

Consumers are the basic element that creates demand in electricity supply. In

other words, the main purpose of electricity supply is to meet the electricity needs

of consumers spread from cities to rural areas. Consumers are generally divided

into 3 categories. These categories are domestic, commercial and industrial con-

sumers. The domestic consumer may be the house type or the apartment type. It

usually represents the electrical load of 1 family. Commercial consumers consist of

buildings consisting of commercial inns or offices. However, industrial consumers

are factory-type intensive production facilities.

Consumers are an uncontrollable and unpredictable structure in the conven-

tional grid system [60]. According to this network structure, the end-user con-

sumes independently from the network and the network is responsible for feeding

this demand. This uncertainty and uncontrollability creates a serious challenge in

maintaining the production-consumption balance in electricity [61]. This challenge

threatens the network frequency [62] and security of supply [63].

In the smart grid concept, consumers have an active communication with the

grid and an important role in the supply-demand balance [64]. This role first

appears when the consumer regulates consumption in multi-time [65] or dynamic

network pricing [66]. The purpose of multi-time tariffs or dynamic grid pricing

is to increase demand control over the consumer. It is expected that consumers

will naturally tend to shift their consumption to periods when prices are cheaper.

While grid pricing creates expectations about the consumer’s trend, it still does

not provide complete control over consumption. However, if the consumer wants

to do bill management, end-user can follow the grid pricing periods manually and

regulate her consumption. As the next step, it can consume the stored electric-

ity when the electricity price is expensive, by using batteries to store when the

electricity price is cheap [qatar paper].
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The smart home structure, in which consumption can be monitored and con-

trolled by the end-user, continues to be discussed with different approaches. Sen-

sors come to the fore in the smart home concept [67]. Especially the automatic

control of heating and hot water systems with sensors [68] and smart decision

support mechanisms [69] has a serious effect on electricity demand. In addition,

systems that provide control by monitoring consumption, such as smart light-

ing [70], also provide convenience in electricity management. In addition to the

concept of smart home, terms such as smart building and smart industry continue

to be reflected in life. There are smart building applications such as smart secu-

rity systems [71] and space planning [72], and smart industry applications such as

production [73] and maintenance planning [74].

Consumers, who manage their electricity demand by optimizing their energy

management, form a new consumer structure. As the last step, the establish-

ment of the communication infrastructure of the smart consumers with the grid

comes [75]. This communication infrastructure enables demand-side management

applications [R] that consider both consumer and grid needs. The key compo-

nents of smart consumer buildings with the potential to increase efficiency [76],

sustainability [77] and two-way gain with grid [78] are given in Figure 3.

2.2 Producer

The facilities where electricity generation takes place are known as producer. Fossil

fuels such as wood and coal, fission elements such as uranium and thorium, and

streams are used as sources in conventional production facilities. These production

facilities have features such as adjusting the generation level, providing continuous

generation and not requiring storage. However, the structure and features of

production facilities will be changed in the smart grid concept.

Renewable energy systems such as wind and solar are rapidly being included in

production facilities with private and state initiatives. The biggest positive feature

of these production facilities is that they are an important step towards reducing

9



Figure 3: Residendital-Commercial-Industrial Smart Consumer Concepts

carbon emissions. However, the biggest negative aspect is that they have a nature-

dependent discontinuous production profile. It is expected that this discontinuous

structure will create various problems in the network with the increase of RES

penetration.

Despite some negative effects, the energy independence of countries and the

nature-based and free RES resources increase the importance of RES installation.

Especially with the recent political problems such as the Russia-Ukraine war in

the world, it has been seen that the electricity potential of the countries that

they produce with the raw materials they import from abroad can be endangered.

However, as seen in the recent examples of Texas and Isparta, the effects of natural

disasters and major problems in domestic electricity supply systems have seriously

brought security of supply back to the agenda and reminded the importance of

distributed generation systems (DGS).

Although DGSs are an alternative source for security of supply, they are ac-

cepted as the new model of production facilities in the smart grid concept. DGSs
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are small in scale compared to traditional large power plants. As part of the

energy transition, they were generally not included in grid planning studies, con-

sidering that DGS’s assets would have little impact on a large electricity grid. In

the current order, it is aimed to increase the number of mechanisms, also called

unlicensed generation. As a successful result of the incentive mechanisms, DGS

has emerged as solar power plants or rooftop photovoltaic (PV) panels where the

sun is abundant, and as small-scale wind turbines where the wind is high. The

number of DGSs, which are located at the points desired by the investor, by fol-

lowing a resource-based approach, is increasing. With the increase in the installed

capacity of DGS, operational difficulties have arisen for the electricity grid, whose

management uses traditional methods. One of the important factors causing these

difficulties is that there is no information flow from the DGS to the central op-

erator. Therefore the central operator has to make predictions about the instant

situations of the DGS while establishing the generation-consumption balance. The

high margin of error in the forecasts forces operators to manage networks more

sparingly in order to take less risk, which leads to a serious decrease in energy

efficiency.

About 15% of the installed power in Turkey is provided by solar and wind

energy systems, which are mostly preferred as DGS [79]. According to the data

shared by the Ministry of Energy, Turkey’s wind energy potential is estimated at

48,000 MW (51.6% of the current installed power) [80]. However, according to [81],

2.583 MW unlicensed solar power distributed generation units were established in

2017 and 1.578 MW in 2018. As a result of the global problems brought by carbon

emissions, it is known that renewable energy systems related to the decisions

taken worldwide and the targets of achieving zero emissions are increasing rapidly.

Although the increase in renewable electricity capacities around the world has been

interrupted by the 2020 pandemic process, it is seen that it has increased over the

years, and it is estimated that the increase will continue in the coming years [82].

In addition to the role of environmentally friendly generation on sustainability,
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it has been demonstrated by many studies that DGS has a reducing effect on sys-

tem losses if it is built geographically close to the consumer and at the distribution

level [83–85]. Inverter-based DGSs provide grid balance very quickly by changing

the inverter current and active/reactive power generation when extreme situations

such as sudden voltage drops occur [86].

One of the most important terms in the smart grid concept is flexibility. DGS’s

installed inverter has control potential to provide more flexible operation in the

grid. In order to keep the voltage in the network between operational limits, reac-

tive power control can be achieved with many methods and devices. Within the

scope of the smart grid, the potential of DGSs to participate in control, flexibility,

and investment planning mechanisms in the grid can be listed as follows.

• Development of a distributed reactive power control method for the distri-

bution grid [87]

• Developing an approach that coordinates active and reactive power to be

provided from DGS and capacitor units [88]

• Developing algorithms to increase DGS density by regulating the power fac-

tors of DGSs and reducing their negative effects on transmission and distri-

bution networks [89]

• The use of inverters in DGS facilities for flexible voltage intervention in

response to sudden voltage drops [90]

• The use of local reactive power control capacities of PV inverters in order

to increase the PV generation density at low voltage level [91]

Optimal power flow (OPF) serves the smart grid concept in order to obtain

optimum solutions [92] for grid planning, production control and grid management.

OPF has an important place in examining the effects of generation units on the

grid. Some studies using OPF are as follows;
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• Combined optimization of power flows in a system where different energy

sources are connected [93]

• Positioning and sizing of DGS plants to reduce power losses [94–96]

• Investigation of the effects of DGSs on reactive power and voltage control [97]

• Evaluation of grid capacity for DGS connection [98]

• Energy management of grid-connected PV and battery systems [99]

One of the most important issues with power systems optimization approaches

in smart grids is generation estimation. Power estimation of a PV system as a

short-term estimation [100] and estimation of hourly solar radiation from the day

ahead [101] are possible with artificial intelligence algorithms. Many studies on

the estimation of solar [102–105] and wind [106–109] productions can be reviewed

for detailed information.

2.3 Prosumer

The word prosumer is derived from the combination of the words producer and

consumer. It emerges as a new role in the transformation of energy systems. As

this role name includes, it represents the end user who has both production and

consumption actions. The most common version is created by end users who

integrate roof top solar energy systems at their consumption points.

Being a prosumer provides the advantage for end users to make their own

production and reduce electricity purchase from the grid. Thus, this production

system investment has an effect on reducing invoices. The spread of distributed

generation on the consumer side and the increase in self-sufficiency actually have

a positive effect on electricity supply. Because network investments and losses

decrease. Therefore, on-site production investments are supported in Turkey and

around the world with various government incentives [110–117].

Prosumers represent the holistic and active end user with the production unit,

controllable loads, electric vehicle, battery and its own energy management system
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within the smart grid concept. It brings up the terms self-consumption and self-

sufficiency with a structure that can be called a nanogrid. A lot of work has been

done to optimize the energy management of such smart home or smart buildings

[118–122]. It is important for prosumer’s energy management systems to reduce

the electricity bill, to sell electricity to the grid, and to have controllable loads

that can respond to demand-side management applications.

Of course, DGSs being uncontrollable poses a problem for the consumption

balance of prosumers. These problems are tried to be solved with energy storage

systems.

2.4 The Role of Batteries in the Grid

In this section, the role of batteries in the smart grid concept will be explained.

Within the scope of the chapter, the usage areas of grid-size battery systems,

the increase in battery demand over the years, optimization approaches used in

battery integrations, and battery sizing applications will be discussed in detail.

2.4.1 Battery Services

Grid-size batteries have started to be used for different purposes in the grid. These

purposes can be listed as frequency control, voltage control and reactive power

supply, virtual inertia support, renewable firming with storage ramping, bill man-

agement etc. The usage areas that will be exemplified in this Subsection are

expected to solve many problems in conventional grid systems.

2.4.1.1 Frequency Control

In electrical power systems, supply and demand balance should be provided in-

stantly. This balance directly affects the system frequency, which determines

power quality and reliability. Various applications are carried out by a trans-

mission system operator (TSO) to maintain the balance between production and

consumption and to keep the frequency stable. Frequency control is performed at 3

levels [123]. Primary frequency control (PFC) responds to frequency disturbances
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within a few seconds. Traditionally the only way was to use the thermal genera-

tors that are already online and actively producing energy to provide such service.

While thermal generators are used as spinning reserves for PFC on the production

side, there are studies to provide the frequency control service at the consump-

tion side [124–126]. Since Battery Energy Storage Systems (BESS) can ramp up

and down very fast, they can be robust equipment in frequency control [127,128].

However, current studies continue [129–131].

2.4.1.2 Voltage Control and Reactive Power Supply

Voltage, along with frequency, is another factor that determines power quality

in power systems. Thanks to the inverter connection, BESSs can provide reac-

tive power as well as active power to the grid. The possibility of reactive power

contribution makes BESSs advantageous in voltage control. Modeling studies are

carried out with various methods to use BESSs in reactive power support and

voltage control [132]. However, BESS allocation has also become an important

issue [133].

2.4.1.3 Virtual Inertia Support

Renewable energy penetration is expected to increase rapidly soon as a result

of the targets set by countries and regions to reduce carbon emissions. With

the intermittent nature of renewable resources and the increase in penetration,

the share of synchronous generation in the generation mix will keep decreasing.

Renewable sources, especially photovoltaics, are expected to cause low system

inertia as the challenge power systems will face [134]. Various studies have been

carried out to solve the inertia problem in power systems by using the BESS’s fast

frequency response feature [135–137].

2.4.1.4 Renewable Firming with Storage Ramping

Fluctuations in output power are another challenge that renewables bring to the

power system. Solar PV and wind energy generation, whose power output depends

15



on the weather, may increase or decrease at high ramp rates. They can force the

ramp-up and ramp-down constraints of the grid. Various applications have shown

that BESS can be used to firm the renewable’s output power [138–140]. The

energy and power capacity of BESS has also become important in hybrid systems

for renewable firming service [141,142].

2.4.2 Increase in Battery Demand

In Figure 4, the past installed power and future outlooks of grid-size ESSs are

compiled from various reports [5–15]. As a result of the targets and forecast reports

announced by the countries, a significant increase is expected in ESS investments.

However, cell prices of Li-on batteries have decreased from $750/kWh in 2010 to

$100/kWh in 2020. With the increase in investments, further reductions in ESS

investments are expected in the coming years.

Figure 4: ESS Installed Capacities vs ESS Installation Costs [5–15]

2.4.3 Battery Sizing Applications

Battery storage investments are increasing within the scope of increasing energy

storage need. One of the most important issues in battery investments is the sizing
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of the ESS. ESS sizing directly affects both the investment costs and the operating

efficiency at the point of use.

Studies for sizing the ESS installation are generally carried out for the needs

of the end user. In the literature, it has been seen that ESS sizing algorithms can

be grouped in 3 categories under the titles of producer, prosumer and consumer.

The main purpose of sizing algorithms in Producer-integrated ESS installations

can be summarized as absorbing intermittent generation, increasing generation

efficiency and maximizing revenue due to grid purchase pricing. However, the

most important agenda item when sizing the battery for the prosumer is self-

sufficiency. Consumers, on the other hand, need battery sizes where they can bill

management within the scope of TOU with their current load profiles. The scope

and objectives of battery sizing approaches in the literature are summarized in

Table 1.

In this study, in addition to those in the literature, an algorithm that can make

battery sizing for all end users with simple modifications will be presented. These

modifications were designed to suit the different needs of end users. Within the

scope of this thesis, an algorithm has been developed that will enable consumers

to make bill management connected to TOU and minimize transformer losses of

end-users with transformers. The algorithms have been developed for producers

according to scenarios with limited network purchase contract and hourly power

purchase contract. Sizing for the production facility that will make sales sensitive

to the electricity market price has also been added to the producer use-case studies.

For prosumers, prosumer agreements that can and cannot sell to the grid are

evaluated separately.
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CHAPTER III

MACHINE LEARNING AS A FORECASTING

METHOD

Estimation algorithms have an important place in the smart grid concept. First

of all, the uncertainty in the generation profile of RESs poses a threat to the

supply-demand balance in the grid. The most appropriate way to overcome this

challenge is to plan the grid supply by accurately predicting the future generation

from RES with machine learning algorithms [165–168]. Likewise, the estimation of

consumption on the end-user side also contributes to the supply-demand balance,

unlike conventional grid models [169–172].

3.1 Artificial Neural Networks (ANN)

Artificial neural networks (ANNs) emerged on the basis of mimicking biological

neural networks [173]. Similar to biological neural networks, artificial neural net-

works are made up of nodes and layers. Each of the nodes represents a neuron.

Layers, on the other hand, contain multiple nodes. In artificial neural network ap-

plications, it is basically aimed to solve the relationship between the information

introduced as input and output data and to generalize the models [174]. After

the input and output information is taught to the model, the model is expected

to calculate the weights that the layers will affect on the output. The general

structure of neural networks consisting of nodes, layers, and connections is shown

in Figure 5 [16].

ANN, which is constantly developing and providing successful results in fore-

casting, natural language processes, and decision support applications, also comes

to the fore in meeting the generation and consumption forecasting needs of smart

grids. Zhang et al. [175] evaluated ANNs while using different algorithms for load
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Figure 5: Neural Networks structure (adopted from [16] )

estimation in smart grids. Additionally, in [176] was studied that the utility can

use it for demand side management by estimating load profiles with ANN.

On the generation side, it is seen that ANN models are used for wind generation

forecasting [177], solar generation forecasting [178], and optimal fuel cell operation

[179]. Detailed reviews of studies using ANN for wind and solar can be found

in [180] and [181].

3.2 Deep Neural Networks (DNN)

Deep neural networks represent multiple layers of ANN models. As in the ANN

model, it consists of node and layer units. Unlike the ANN model, it contains

more than one layer. Layers can consist of many nodes, as well as weights occur

between layers. There are weights from each node in the layers to each node in

the next layer. Thus, the neural network is established. In addition to the ANN

hyperparameters, how many layers to build a model with becomes an engineering

problem. The basic DNN model consisting of 3 hidden layers is visualized in

Figure 6.
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Figure 6: Deep Neural Network Structure

DNN models can be used for many applications within the scope of the smart

grid concept. Hossen et al [182] used DNN model for short-term load forecasting.

Likewise, load prediction [183] has been studied with DNN based on smart meter

data. The use of DNN in estimating the energy load is seen in [184] and [185].

In addition, DNN models can be used for the detection and prediction of cyber

[186, 187] and physical [188] problems. MehdipourPicha et al. [189], on the other

hand, used DNN for error estimation of power transformers. In this study, the

DNN model will be used to predict electricity market pricing.

3.3 Long Short-Term Memory (LSTM)

Long short-term memory (LSTM) is part of recurrent neural networks. Unlike

feed-forward neural networks, they have the ability to keep the results from pre-

vious neural networks in their memory and previous iteration results affect subse-

quent iterations. LSTM general structure is shown in Figure 7 [17]. This feature

provides an advantage in using LSTM in sequential [190] and time-dependent [191]

estimation processes.

Since LSTM is time and period sensitive, it can be used in power systems,
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Figure 7: LSTM structure (adopted from [17])

especially for estimating the electricity demand of buildings [192] or regions [193].

In addition, applications such as estimating electricity market prices, which are

important for smart grids, are also suitable for the use of LSTM [194].
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CHAPTER IV

CREATING INPUTS BY MACHINE LEARNING

In this chapter, input data will be created to be used in battery sizing algorithms.

Input data includes future forecasted demand, PV generation, and electricity mar-

ket prices from outdated datasets. LSTM models will be used to predict demand,

ANN to predict PV generation, and DNN models to predict market clearing price

(MCP). Details of historical data sets, hyperparameters of constructed models and

estimation results will be explained in detail.

4.1 Demand

For use in demand profiles, 1-year and 15-minute consumption data of a real com-

mercial building is used. The consumption profile seen in Figure 8 belongs to this

commercial building. The base load of this commercial building is approximately

50 kW. However, the annual maximum power consumption is 292 kW. Consump-

tion data is obtained from meter records and the start date is ”20.09.2020” and

the ending date is ”19.09.2021”. The data consists of 34987 periods in total.

Figure 8: 1-year 15-minute demand profile.
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By using this 1-year demand profile, the next 1-month demand profile is es-

timated. While estimating, the LSTM method mentioned in Subseciton 3.3 was

used. The LSTM method is implemented in Python with the ”keras” library.

The hyperparameters of the LSTM model, which is built as a 1-layer in demand

estimation, are given in Table 2.

Table 2: LSTM model hyperparameters.

units loss optimizer epochs batch− size

100 mae adam 300 100

The hyperparameters given in Table 1 affect the estimation result. These

hyperparameters are tuned to improve the results. ”units” consists of positive

integers and returns the number of nodes in the layer [195]. ”loss” represents the

error measuring method of the model. In this LSTM model, the mean absolute er-

ror method is used. ”mae” performs an error measurement by taking the absolute

value of the difference between the actual data and the model results [196].

With the ”optimizer” parameter, the method to find the solution is selected.

Adam optimizer is used in this LSTM model. The ”adam” optimizer is a stochas-

tic gradient descent method that evaluates first-order and second-order moments

[197]. Kingma et al [198] states ”computationally efficient, has little memory

requirement, invariant to diagonal rescaling of gradients, and is well suited for

problems that are large in terms of data/parameters”.

”epoch” means that the whole train set is passed once while performing the

regression. In other words, the eores are evaluated as much as the number of epochs

and the teaching is performed by passing over the train set [199]. ”batch” refers to

the set of N dataset elements. These clusters are processed independently of each

other. The size of the number assigned to the ”batch-size” generally improves the

results, but also slows down the processing speed of the model [199].

As a result of demand estimation using LSTM with the above parameters, a

1-month demand profile was obtained. This profile, seen in Figure 9, will be used
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in the next sections for battery sizing. The purpose of this estimation process is

to develop a model that can predict future needs, not based on past demand data.

Figure 9: 1-year 15-minute demand profile & 1-month 15-minute prediction pro-
file.

4.2 PV Generation

The real 1-year 1-hour production data of a solar generation facility with an in-

stalled power of 25 kWp is used as the solar generation profile. This production

profile is seen in Figure 10. According to this production profile, which includes

the dates between ”01.01.2020” and ”31.12.2020”, the maximum production pe-

riod was realized at 1 pm on ”20.03.2020” with 4.96 kW. The generation profile

includes 8760 periods in total. In Figure 11, 1-week generation profiles from each

season are visualized in order to show the generation profile more clearly.

Using 1-hour 2020 generation data, the solar generation profile for January

2021 is estimated. The ANN model, whose working principle is described in

Section 3.1, is used for production estimation. The ANN model is built in Python

with the ”keras” library. The hyperparameters used for the ANN model consisting

of 1 hidden layer are given in Table 3. While installing ANN, 100 nodes were used

in the hidden layer. ”mae” is defined as the error measuring method and ”adam”

as the optimizer. While the ”epoch” number is kept as 300, the ”batch-size” value

is 1500.

As a result of the solar production estimation made with the ANN model, the
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Figure 10: 1-year 1-hour generation profile.

Table 3: ANN model hyperparameters.

units loss optimizer epochs batch− size

100 mae adam 300 1500

production profile for January 2021 was obtained. Figure 11 shows the generated

and predicted solar profiles. However, 1 week of the estimated production profile

is visualized in Figure 12 to better illustrate the produced profile. This estimated

production data will be used in battery sizing optimization for the Producer.

4.3 Electricity Market Price

For electricity market prices, the 2-year 1-hour market clearing price (MCP) data

set covering 2017 and 2018, taken from the EPDK transparency platform, is used.

EUR/MWh prices are taken as basis to avoid the effect of exchange rate difference.

The 2-year MCP profile is shown in Figure 14. The data set consists of a total of

17520 market prices.

Using the MCP profile containing 2-year 2017 and 2018 data, January 2019

MCP values are estimated. The DNN model, the structure of which is described in

Section 3.2, is used for market price estimation. The parameters of the DNN model

constructed with 3 neural network layer are given in Table 4. While constructing

the DNN model, 100 nodes were created in each of the 3 hidden layers. ”mae”
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Figure 11: 1-week 1-hour seasonal generation profile.

is used for error measurement. ”mae” was used as the optimizer. The ”epoch”

number was set to 300 and the ”batch-size” was taken as 1500.

Table 4: DNN model hyperparameters.

units loss optimizer epochs batch− size

100 mae adam 300 1500

January 2019 MCP values were estimated by MCP estimation with the DNN

model. In Figure 15, 2-year train set and estimated 1-month data are visualized.

However, in order to show the estimated values in more detail, the last 1 week of

the train set and the estimated 1 month data set are given in Figure 16. Estimated

MCP values will be used for battery sizing in the producer scenario that will offer

a selling price to the market.
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Figure 12: 1-year 1-hour generation profile.

Figure 13: 1-week 1-hour generation profile.

Figure 14: 2-year 1-hour MCP profile.
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Figure 15: 2-year 1-hour real & predicted MCP profile.

Figure 16: 1-month 1-hour predicted MCP profile.
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CHAPTER V

OPERATIONS RESEARCH IN POWER SYSTEMS

Battery sizing algorithms will be established with various optimization models.

The mathematical infrastructure of these optimization models is explained in this

chapter. In this context, linear programming, quadratic programming, integer

programming and multi-objective subsections were created. In the subsections,

the mathematical infrastructures of the algorithms and their usage areas were

explained in detail.

5.1 Linear Programming

Linear programming is defined as ”The process of minimizing a linear objec-

tive function subject to a finite number of linear equality and inequality con-

straints.” [200]. It is used to model equation systems with thousands of variables

and constraints in many areas such as production and logistics. The standard

notation [201] in linear programming is as in Equation 1.

minimize
{
cT .x

}
(1)

subject to

A.x ≤ b

Automated systems gained importance thanks to optimization within the scope

of smart grid applications. Since linear programming is very advantageous in terms

of solution speed, it is widely used in many smart grid concepts.

The main area of use of linear programming has been energy management

systems. Tan et al. have proposed a model that can manage both the supply and

demand sides and provides flexibility in energy management [202]. In this model, it

is aimed to minimize the energy cost in demand-side planning and to maximize the
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load factor in supply-side planning. However, linear programming technique can

also be used in grid planning and investment to calculate the optimum placement

of grid units [203] and the most efficient routing of energy supply lines [204].

The hourly peak load shaving model was developed with a linear programming

approach so that smart homes, which are an important unit in smart grids, can

participate in grid flexibility [205]. On the other hand, Kim et al. suggested the

optimal power flow and energy dispatch model for smart buildings with their own

production and storage units [206].

5.2 Quadratic Programming

Quadratic programming has a quadratic objective function and a set of linear

constraints. They can be found in convex and non-convex structures. Non-convex

quadratic optimization problems are more difficult to solve because there may be

more than one local minima point. The standard notation [207] for Quadratic

programming is as in Equation 2.

minimize

{
q(x) =

1

2
.xT .G.x+ xT .c

}
(2)

subject to

aT .x = b

aT .x ≤ d

Quadratic programming is more complex than linear programming and may

be more difficult to solve. However, since the power transmitted in electrical grids

consist of active and reactive components, quadratic programming provides a more

realistic approach to modeling power systems.

von Berg et al. proposed quadratic programming algorithms that can provide

real-time operation for optimal reactive power flow in networks with distributed

generator systems [208]. There are also studies that model both AC [209] and

DC [210] optimal power flow approach for smart grids.
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Integration and power exchange of electric vehicles, whose usage is increasing,

has also become a challenge especially for distribution networks. Quadratic pro-

gramming has taken place in the modeling of electrical and mechanical systems

within electric vehicles [211] and in the participation of electric vehicles in power

systems, both singular and aggregator-wide [212,213].

5.3 Integer Programming

It is formed by entering integer coefficients in the integer programming optimiza-

tion algorithm. It is a version of mixed-integer programming (MIP) used with

linear or quadratic programming. However, since it introduces a discrete struc-

ture to the linear solution set, it has a more complex and difficult solution than

linear programming [214]. Mixed-integer programming general problem structure

is as in Equation 3 [215].

maximize {c.x+ h.y} (3)

subject to

A.x+G.y ≤ b

x ≥ 0 and integer, y ≥ 0

Optimization algorithms such as mixed-integer linear programming (MILP)

or mixed-integer quadratic programming (MIQP) are often used for intelligent

solutions in power systems. This method is used especially when unidirectional

power flow modeling is required. Algorithms designed to ensure that the mains

and the prosumer receive power at the same time [216] or [217] to prevent the

battery from charging and discharging at the same time are examples of this.
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CHAPTER VI

BATTERY SIZING ALGORITHMS

In this chapter, different models were established for consumer, producer and

prosumer and use-cases were examined. These different use-cases, which are de-

termined according to the needs of the end-user, consist of 2 different models

for the consumer, 3 different models for the producer, and 2 different models for

the prosumer. First of all, the general structure of all models, then the mathe-

matical algorithm, and finally the use-cases created for different end-users will be

examined.

6.1 Consumer

Two different battery sizing models have been developed for the consumer. These

models are ”Time-of-Use Oriented Battery Installation” and ”Time-of-Use & Trans-

former Loss Oriented Battery Installation”.

6.1.1 Time-of-Use Oriented Battery Installation

This algorithm has been developed for all end-user profiles. The purpose of the

model is to provide bill management by making appropriate battery operation in

multi-time tariff systems. The MILP method is used in this model.

The basic structure of the consumer model with battery sizing optimization

is visualized in Figure 17. According to this structure, commercial, residential or

industrial end-users can perform battery charge-discharge operation according to

the TOU tariff. In this model, the consumer is not allowed to sell electricity to

the grid.
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Figure 17: Time-of-Use Oriented Battery Installation General Structure

6.1.1.1 Model

In the sizing of the battery to be used by the consumer for bill management, the

objective function consists of the bill related to the energy consumed is tried to

be minimized in Equation 4.

min

{(
T∑
t

gt.TOUt.∆T

)}
(4)

In Equation 5, power balance was created for the end-user bus. In this equa-

tion, the power to be purchased from the grid and the discharge power of the

battery represent the supply, the demand of the commercial building and the

charging power of the battery represent the total demand.

gt + dt.η
discharge = Dt + ct,∀t (5)

Equation 6 ensures that the SOE of the battery is always higher than the

depth-of-discharge rate. At the same time, Equation 7 prevents the instantaneous

SOE of the battery from exceeding the battery energy capacity.

DoD.E ≤ et,∀t (6)
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et ≤ E,∀t (7)

The SOE amount in the first and last periods are fixed in Equation 8 so that

the energy exchange analysis can be done correctly with the optimization algo-

rithm. SOE values for all periods except the first and last periods depend on the

instantaneous charge and discharge in Equation 9.

et = DoD.E,∀t (8)

et = et−1.
(
ct.η

charge − dt
)
.∆T, t = {1, T} (9)

Equation 10 and Equation 11 constraints are used to prevent charge and dis-

charge from taking negative values. However, the battery can be charged as much

as the available gap in the energy capacity of the battery in Equation 12.

0 ≤ ct,∀t (10)

0 ≤ dt,∀t (11)

ct.η
charge.∆T ≤ E − et,∀t (12)

It cannot be discharged more than the battery’s current SOE in Equation 13.

However, Equation 14 and Equation 15 limit charge and discharge by the battery’s

power capacity.

dt.∆T ≤ et,∀t (13)

ct ≤ P, ∀t (14)

dt ≤ P, ∀t (15)

Equation 16 and Equation 17 are added to the algorithm with the help of

binary variables to avoid simultaneous charge and discharge in the optimization

results.

dt ≤ G.ut,∀t (16)
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ct ≤ G. (1− ut) ,∀t (17)

Finally, physical constraints are added so that the power purchased from the

grid is not negative and not higher than the transformer power to which the

commercial building is connected in Equation 18 and Equation 19.

0 ≤ gt,∀t (18)

gt ≤ G,∀t (19)

6.1.1.2 Use-Case Study - 1

For this use-case study, the commercial building demand profile predicted in Sub-

section 4.1 was used. Data are in 15-minute periods and tariff pricing is based on

EPDK 3-time tariff prices for commercial consumer [218]. It is assumed that the

commercial building is connected to a 400 kVA transformer with 65 kW agreement

power.

The depth-of-discharge of the battery planned to be installed is taken as 0.2. In

this case, the battery SOE will not fall below 20%. In the use case, the discharge

efficiency of the battery is 0.875 and the charge efficiency is 0.9.

In Figure 18, the state-of-energy (SOE) status of the consumer is shown as 3-

day according to the simulations. The maximum SOE value for this consumer was

found to be 553 kWh by the developed algorithm. However, the power capacity of

the battery was calculated as 61 kW. Figure 18, shows that this battery performs

1 cycle per day. Since the TOU tariff times have a sequential period, the battery

performs sequential charging and discharging processes.

The charge-discharge profile of the consumer integrated battery is shown in

Figure 19 as 3-day. At night, when the TOU tariff is cheap, the battery is charged.

At peak charging times, it discharges and feeds the consumer’s demand.

Figure 20 shows the pricing profile of the TOU tariff with black dashes. How-

ever, the blue line represents the pre-battery load profile of the building. When

the battery is used for charge-discharge operation and bill management within
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Figure 18: Periodical State-of-Charge

Figure 19: Periodical Charge-Discharge Operations

the scope of TOU tariff, the load profile of the consumer turns into a pink line.

According to the post-battery load profile, no power is supplied from the grid in

peak tariff pricing. In cheap tariff periods, the load profile rises above the pre-

battery load profile. In this way, load shifting is realized thanks to the battery,

and electricity is used from the grid during the hours when the electricity price is

cheap.

In Table 5, battery sizing optimization results are given according to the 1-

month consumption estimate of the consumer with 65 kW contract power. In the

table, the battery energy capacity calculated with the proposed model is given in

kWh and the battery power capacity is given in kW. According to the TOU tariff

pricing, the total bill before the battery is 3,928.55 TL, and the total bill after the

battery is 2,378.97 TL. In this case, the integration of the battery with optimum
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Figure 20: Periodical Demand-Supply Balance

sizing provides a monthly profit of 1,549.58 TL for the consumer.

Table 5: 1-month simulation results of Profile 1.

Profile
No.

Battery
Energy
Capacity
(kWh)

Battery
Power

Capacity
(kW)

Total
Bill

(Before)

Total
Bill

(After)

Saving
(TL)

1 553 61 3,928.55 2,378.97 1,549.58

Max
Demand
(kW)

Min
Demand
(kW)

Mean
Demand
(kW)

Power
Contract
(kW)

Total
Energy
Demand
(kWh)

49.14 2.50 8.17 65 5,883

Table 6 shows the results of TOU oriented battery sizing optimization for

different consumers. Battery sizing optimization has been made for 5 different

consumer profiles. The maximum power consumptions of these consumers are

49.14 kW, 38.21 kW, 20.67 kW, 199.23 kW, 614.29 kW, respectively. However,

grid power purchase contracts have been accepted as 65 kW, 75 kW, 50 kW, 400

kW and 1000 kW, respectively. The monthly total energy consumption is 5,883

kWh, 10,220 kWh, 7,427 kWh, 205,413 kWh, and 1,086,146 kWh. Different sized

consumers were selected to further compare the battery sizing optimization results.

The battery energy and power capacity recommendations of the battery sizing

algorithm for consumers are shown in Table 6. However, the monthly consumer
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bill before and after the battery was calculated according to the 3-time TOU

tariff and added to the table. The Bill calculated the savings potential of 39%,

38%, 38%, 42% and 28%, respectively. The ratio of the recommended battery

energy capacity to the total energy consumption of consumers was determined as

9.1% at the highest and 2.4% at the lowest. However, it was observed that the

ratios of the average power demand of consumers to the recommended battery

power capacities are in the range of 13.4% - 53.2%. It was determined that the

battery power capacities are shaped according to the power constraint in the power

purchase agreement. With the various use-cases carried out in this context, the

importance of network agreement power for optimal sizing is understood as well

as battery sizing.

Within the scope of TOU Oriented battery installation scenario, consumers are

considered to be connected to transformers of standard sizes, which will correspond

to the smallest power larger than itself, depending on the power contract. In this

scenario, losses in the transformer do not affect the consumer bill. However,

it was observed that the losses in transformers increase due to battery charge-

discharge processes. The algorithm that consumers with transformers can do bill

management and is sensitive to transformer losses will be explained in the next

subsection.
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6.1.2 Time-of-Use & Transformer Loss Oriented Battery Installation

Unlike Subsection 6.1.1, end-user is assumed to have special transformer for this

optimization model. The aim of the model is to reduce transformer losses while

operating the battery for multi-time tariff. The MIQP method is used in this

model.

The basic structure of the consumer model with battery sizing optimization

is visualized in Figure 21. According to this structure, commercial, residential

and industrial end-users can maximize the efficiency of their transformer while

performing bill management according to the TOU tariff. In this model, the

consumer is not allowed to sell electricity to the grid.

Figure 21: Time-of-Use & Transformer Loss Oriented Battery Installation Gen-
eral Structure

6.1.2.1 Model

While constructing the battery operation for the end-user with a special trans-

former, the monetary value of the transformer losses due to the instantaneous

load has been added to the objective function in the first consumer model.
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min

{(
T∑
t

gt.TOUt.∆T

)
+

(
Pk.

T∑
t

(gt
G

)2
.TOUt.∆T

)}
(20)

Idle losses in transformers occur in every period. Copper losses are proportional

to the square of the transformer occupancy. Thanks to the objective function in

Equation 20, it is ensured that the losses caused by the transformer load are

reduced along with the consumer bill. The rest of the model should be set up in

the same way as the first consumer model.

6.1.2.2 Use-Case Study - 2

For this use-case study, the commercial building demand profile predicted in Sub-

section 4.1 (Profile 4) and was used. Data are in 15-minute periods and tariff

pricing is based on EPDK 3-time tariff prices for commercial consumer [218]. It

is assumed that the commercial building is connected to a 400 kVA transformer.

The copper loss coefficient of the transformer was taken as 3.575 in accordance

with the TEDAŞ specification [219].

The depth-of-discharge of the battery planned to be installed is taken as 0.2. In

this case, the battery SOE will not fall below 20%. In the use case, the discharge

efficiency of the battery is 0.875 and the charge efficiency is 0.9.

For better comparison, along with Profile 4, Profile 5 detailed in Subsection

6.1.1 was also used as consumer for TOU and transformer loss oriented battery

installation scenario. The 1-month consumption estimation of Profile 5 was carried

out in accordance with the method in Subsection 4.1. In Figure 22 and Figure 23,

transformer loss analyzes for Profile 4 and Profile 5 end-users are visualized. When

the figures are examined, first of all, attention should be paid to the transformer

losses before the battery, which is shown with the red line. Since these transformer

losses occur depending on the demand profile before the battery, they show an

independent profile from the TOU. The transformer losses for the TOU oriented

battery installation scenario are shown with the cream colored line. The main

purpose of the TOU oriented battery installation scenario is to buy electricity in
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cheap periods. With the increase in electricity purchase in cheap periods, the

occupancy of the transformer to which the consumer is connected also increases.

The increase in occupancy causes an increase in copper losses. Finally, the green

dotted line represents transformer losses in the TOU & transformer loss oriented

scenario. In this scenario, electricity is purchased in cheap periods. However, the

battery does not tend to draw all the power it can draw under the transformer size

constraint. Instead, it keeps transformer losses at a lower level by spreading the

charging time. Thus, transformer losses to be experienced throughout all periods

are minimized.

Figure 22: Time-of-Use vs Transformer Loss Oriented Transformer Losses for
Profile 4

Figure 23: Time-of-Use vs Transformer Loss Oriented Transformer Losses for
Profile 5

In Table 7, use-case 1 and use-case 2 scenario results for Profile 4 and Profile 5
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Table 7: Time-of-Use vs Transformer Loss Oriented Transformer Losses.

Profile
No.

Use
Case

Battery
Energy
Capacity
(kWh)

Battery
Power

Capacity
(kW)

Total
Transformer

Loss
(Before) (TL)

Total
Transformer

Loss
(After) (TL)

4 1 3,034 359 1,500.00 1,602.56
4 2 4,196 281 1,500.00 1,553.18
5 1 43,035 760 1,255.63 1,436.81
5 2 9,774 760 1,255.63 1,356.99

are compared. There have been some changes in recommended battery capacities.

For use-case 1 and use-case 2 scenarios, it is seen that post-battery transformer

losses increase. However, considering the transformer losses after the battery in

the use-case 1 and use-case 2 scenarios, it was calculated that the transformer

losses increased less. This transformer loss savings also reflects positively on the

consumer bill.

6.2 Producer

Optimal battery sizing algorithms for producer were developed for 3 types of

producers. These 3 types of producers consist of producers with different needs,

with limited power agreement, producers with power purchase agreement, and

producers who sell by giving prices to the electricity market.

6.2.1 Limited Purchase Agreement

The basic structure of the producer model with battery sizing optimization is

visualized in Figure 24. According to this structure, RES based power generation

facilities have a power purchase agreement with the grid. This agreement includes

a fixed power purchase price for the instant purchase of the generated power.

However, there is a fixed power limit for which the purchase is contracted. In order

to meet the agreement limit properly, RES power plants are generally installed

with a capacity above this limit. This creates the need for storage for the periods

when the production is above the limit.
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Figure 24: Limited Purchase Agreement Oriented Battery Installation General
Structure

6.2.1.1 Model

In the sizing of the battery to be used by the producer for energy selling manage-

ment, the objective function consists of the energy selling income related to the

solar or wind generation is maximized in Equation 21. ”-” is used with the mini-

mize objective function because the energy sales revenue is tried to be maximized.

The gain in power sales is calculated as the product of the constant C sales price

with the instantaneous power supplied to the grid.

min

{
−

(
T∑
t

gt.C.∆T

)}
(21)

In Equation 22, power balance was created for the producer bus. In this

equation, DER generation and battery discharge power are equalized to battery

discharge with power supplied to the grid.

st + dt.η
discharge = gt + ct,∀t (22)

Equations such as battery SOE, charge-discharge and physical constraints of

the grid are the same as in Subsection 6.1.1.1.

6.2.1.2 Use-Case Study - 3

For this use-case study, the solar generation profile predicted in Subsection 4.2

was used. Data are in 60-minute periods. The power level that the producer has

48



agreed with the grid is accepted as 4 MW. According to the agreement, all power

produced by the solar-based generator up to 4 MW is purchased by the grid at a

fixed price 2 TL/kWh.

The depth-of-discharge of the battery planned to be installed is taken as 0.2. In

this case, the battery SOE will not fall below 20%. In the use case, the discharge

efficiency of the battery is 0.875 and the charge efficiency is 0.9.

In Table 8, the charge-discharge profiles of the solar integrated battery are

shown according to the simulation results performed in accordance with the LPA

scenario. Due to the maximum reception capacity of the grid, which is determined

as 4 MW in the LPA scenario, generation exceeding 4 MW in the pre-battery sit-

uation cannot be sold to the grid. In a battery-free environment, the generation

potential of 4 MW and above would be wasted. However, due to battery inte-

gration, the entire installed power and generation potential can be efficiently sold

to the grid. Since the only constraint in the LPA scenario is the grid purchasing

power, the energy stored in the battery can be sold to the grid at a level not

exceeding 4 MW in all periods.
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It was observed on the side of the producer that it was aimed to be less af-

fected by natural conditions by installing above the agreement power in solar

production systems. However, the production beyond the power of agreement

with this generation will be wasted. Optimal battery sizing results for 5 different

production profiles are given in Table 9. These profiles were obtained from the

EPIAS transparency platform and Renewable.ninja databases, and 1-month gen-

eration estimation was made with the method in Subsection 4.2. Limited power

agreement powers were determined according to their maximum power generation

capacity. It was seen that the battery size is proportional to the waste potential

between maximum generation and limited power agreement. With this result, the

importance of determining the power limit in the agreement with the grid is seen.

Energy sales increased due to the storage of wasted generation.

Table 9: Producers results of LPA.

Pro.
No.

Battery
Energy
Capacity
(kWh)

Battery
Power
Capacity
(kW)

Max
Gen.
(kW)

Installed
Power
(kW)

Limited
Power
Agreement
(kW)

Total
Energy
Sold
Before
Battery
(kWh)

Total
Energy
Sold
After
Battery
(kWh)

6 22 4 5 10 4 699 722
7 569 113 104 150 100 12,138 12,247
8 1,713 342 343 500 300 39,012 39,647
9 3,714 742 707 1,000 650 80,630 81,551
10 22,857 4,571 4,763 5,000 4,000 693,320 716,151

6.2.2 Power Purchase Agreement

The basic structure of the producer model with battery sizing optimization is

visualized in Figure 25. According to this structure, RES based power generation

facilities have a power purchase agreement with the grid. This agreement includes

a fixed power purchase price for the instant purchase of the generated power. In

addition, an agreement has been made with the production facility to purchase

different power levels for different periods. In order to meet the power demand
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by the grid in different periods, storage needs arise when production is high. At

the same time, if the agreed power with the grid cannot be supplied, a penalty is

paid.

Figure 25: Power Purchase Aggrement Oriented Battery Installation General
Structure

6.2.2.1 Model

In the sizing of the battery to be used by the producer for energy selling man-

agement, the objective function consists of two parts in which the energy selling

income related to the solar or wind generation is maximized and the penalty pay-

out is minimized in Equation 23. ”-” is used with the minimize objective function

because the energy sales revenue is tried to be maximized. The gain in power sales

is calculated as the product of the constant C sales price with the instantaneous

power supplied to the grid. Penalty payment is calculated by multiplying the dif-

ference between the instantaneous power capacity agreed with the grid and the

instantaneous power supplied to the grid by the penalty fee.

min

{
−

(
T∑
t

gt.C.∆T

)
+

(
T∑
t

(GPAt − gt) .PC.∆T

)}
(23)

The power balance equation is the same as Subsection 6.2.1.1. Unlike the

producer model in Subsection 6.2.1.1, Equation 19 in Subsection 6.1.1.1 should be

changed in Equation 24. According to this change, the power supplied to the grid

is limited by the power limit agreed with the grid.
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gt ≤ GPAt,∀t (24)

Equations such as battery SOE, charge-discharge and physical constraints of

the grid are the same as in Subsection 6.1.1.1.

6.2.2.2 Use-Case Study - 4

For this use-case study, the solar generation profile predicted in Subsection 4.2 was

used. Data are in 60-minute periods. The agreement of the solar facility with the

grid was determined to always supply a minimum of 1000 kW and a maximum of

4000 kW to the grid between 9 AM-7 PM. According to the agreement, all power

sold by the solar-based generator is purchased by the grid at a fixed 2 TL/kWh.

The penalty of 0.02 TL/kWh was determined for the supply periods under the

agreement.

The depth-of-discharge of the battery planned to be installed is taken as 0.2.

In this case, the battery SOE will not fall below 20%. In the use case, the dis-

charge efficiency of the battery is 0.875 and the charge efficiency is 0.9. Table

10 shows the battery charge-discharge operations as a result of the battery sizing

algorithm of the producer with an installed power of 5 MW. By agreement, the

grid demand starts at 9 AM. Generation starting before 9 AM is wasted in the

battery-free scenario, while it is stored in the battery integrated scenario. An

agreement has been made with the grid that the supply can not fall below 1,000

kW between 9 AM-7PM. However, the generation is 556 kW at 5 PM and 0 in

the following periods. In the battery-free scenario, penalty fee is paid for these

periods. In the battery integrated scenario, energy is stored in order to meet the

low generation periods in the previous periods. Thus, the generation potential is

managed according to the contract power and schedule.
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In order to better compare both battery sizing and differences between scenar-

ios, the same generation profiles as Subsection 6.2.1 were also used for the tests of

the PPA algorithm. In order to better understand the battery sizing ratios, the

minimum supply power is selected as 20% of the installed power and the maximum

supply power is selected as 80% of the installed power for all profiles. In Table

11, the amount of energy sold according to the pre-battery and battery-integrated

scenarios is given. In addition, total revenues are calculated with fixed selling

price and penalty prices.

Table 11: Producers results for PPA.

Pro.
No.

Instal.
Power
(kW)

Max.
Gen.
(kW)

9AM-
7 PM
Min.
Power
Agree.
(kW)

Max.
Power
Agree.
(kW)

Battery
Energy
Cap.
(kWh)

6 10 4.76 2 8 9
7 150 104.08 45 120 434
8 500 342.64 100 400 1,388
9 1,000 707.46 200 800 3,404
10 5,000 4,763.40 1,000 4,000 228,413

Pro.
No.

Battery
Power
Cap.
(kW)

Total
Revenue
(Before)

Total
Revenue
(After)

Total
Energy
Sold
Before
Battery
(kWh)

Total
Energy
Sold
After
Battery
(kWh)

6 3 1,075.90 1,315.31 579.04 687.87
7 59 16,269.56 21,920.71 8,745.25 11,313.96
8 192 53,690.51 71,935.35 28,904.78 37,197.88
9 407 109,924.86 148,042.57 58,965.85 76,292.08
10 3,263 642,907.02 990,000.00 337,230.46 495,000.00

6.2.3 Electricity Market Participating

This algorithm has been developed for all producer profiles. The purpose of this

model is to sell energy at the highest prices in the face of variable grid purchase

prices. The MILP method is used in this model.
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The basic structure of the producer model with battery sizing optimization is

visualized in Figure 26. According to this structure, the RES sourced electricity

generation facility participates in the electricity market and sells power capacity

at the electricity market price.

Figure 26: Electricity Market Participating Oriented Battery Installation General
Structure

6.2.3.1 Model

In the sizing of the battery to be used by the producer for energy selling manage-

ment, the objective function consists of the energy selling income related to the

solar or wind generation is maximized in Equation 25. ”-” is used with the mini-

mize objective function because the energy sales revenue is tried to be maximized.

min

{
−

(
T∑
t

gt.DAMt.∆T

)}
(25)

In Equation 26, power balance was created for the producer bus. In this

equation, solar generation and battery discharge power are equalized to battery

discharge with power supplied to the grid.

st + dt.η
discharge = gt + ct,∀t (26)

Equations such as battery SOE, charge-discharge and physical constraints of

the grid are the same as in Subsection 6.1.1.1.
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6.2.3.2 Use-Case Study - 5

For this use-case study, the solar generation profile predicted in Subsection 4.2

was used. Data are in 60-minute periods and tariff pricing is based on EPIAS

day-ahead market prices for generation unit. The electricity market price was es-

timated using the method in Subsection 4.3 as 1-month 1-hour data. It is assumed

that the generation unit is connected to a 6,250 kVA transformer [220].

The depth-of-discharge of the battery planned to be installed is taken as 0.2. In

this case, the battery SOE will not fall below 20%. In the use case, the discharge

efficiency of the battery is 0.875 and the charge efficiency is 0.9.

In Figure 27, grid supply powers are visualized according to the EMP oriented

battery installation scenario. In this scenario, there is no agreement or power

limit with the grid. The solar producer wants to make the most profit by sell-

ing in the electricity market. While the battery is stored in cheap market times,

it is discharged for sale at expensive market times. Since both solar generation

and electricity market price are estimated in this scenario, the accuracy of the

prediction algorithms will gain importance in the realization of the scenario. Ac-

cording to the estimated data in the figure, the grid supply powers are seen. In

the pre-battery scenario, the electricity produced is sold directly. However, in the

battery-integrated scenario, the decrease in the market price in the 11th period

resulted in battery storage instead of electricity sales. In the 106th period, it is

seen that the high market price and the grid supply power are higher than the

pre-battery scenario.

While testing the EMP oriented battery sizing algorithm, end-user profiles

used in other producer algorithms were used. There is no power limit in the

EMP scenario. In this case, the power of the transformer to which the generation

facility is connected limits the grid supply power. As seen in Table 12, it was

accepted that the installed power of the solar generation facilities depended on

the standard transformer power above. It was determined that this algorithm,

which is sensitive only to the electricity market price, uses the entire transformer
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Figure 27: Grid Selling Operations with EMP

capacity in the periods when the electricity market price is high, and the battery

power capacities are determined accordingly. Total energies sold decreased. This

is because the battery efficiency is not 100%. However, revenues compared to the

pre-battery scenario as stored energy was sold in higher priced periods.

6.3 Prosumer

This algorithm has been developed for all prosumer profiles that can have solar or

wind systems. The purpose of this model is to perform bill management within

the scope of TOU by realizing an optimum energy sharing for the generation unit,

battery and grid. The MILP method is used in this model.

6.3.1 Without Contract for Power Sale to the Grid

The basic structure of the prosumer model with battery sizing optimization is

visualized in Figure 28. According to this structure, the end-user, which has a

RES sourced electricity generation facility, performs bill management according

to the TOU tariff. The end-user is not allowed to sell power to the grid, so it can

consume the generated power or store it in the battery.

6.3.1.1 Model

In Equation 27, power balance was created for the prosumer bus. In this equa-

tion, the unit of generation, battery discharge power and grid as supply; building
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Table 12: Producers results for EMP.

Pro.
No.

Transformer
Cap. (kVA)

Installed
Power
(kW)

Max.
Gen.
(kW)

Battery
Energy
Capacity
(kWh)

Battery
Power
Capacity
(kW)

6 50 10 5 250 50
7 160 150 104 800 160
8 630 500 343 3,150 630
9 1,250 1,000 707 6,250 1,250
10 6,250 5,000 4,763 31,250 6,250

Pro.
No.

Total
Revenue
(Before)

Total
Revenue
(After)

Revenue
Increase
(TL)

Total
Energy
Sold
Before
Battery
(kWh)

Total
Energy
Sold
After
Battery
(kWh)

6 235.64 235.93 0.29 717 715
7 3,959.53 3,963.75 4.22 12,007 11,970
8 13,003.23 12,993.39 13.62 39,437 39,240
9 26,675.58 26,703.20 27.62 80,973 80,729
10 235,642.46 235,924.88 282.42 717,232 715,045

demand and battery charge power as total demand are added to the algorithm.

gt + st + dt.η
discharge = Dt + ct,∀t (27)

Equations such as objective function, battery SOE, charge-discharge and phys-

ical constraints of the grid are the same as in Subsection 6.1.1.

6.3.1.2 Use-Case Study - 6

The building demands used for this use-case were estimated by the method de-

scribed in Subsection 4.1. Data are in 15-minute periods and tariff pricing is

based on EPDK 3-time tariff prices for commercial consumer [218]. It is assumed

that the commercial building is connected to a 400 kVA transformer. The solar

generation datas for The Prosumers were estimated by the method in Subsection

4.2.

The depth-of-discharge of the battery planned to be installed is taken as 0.2. In

59



Figure 28: Without Contract for Power Sell Oriented Battery Installation General
Structure

this case, the battery SOE will not fall below 20%. In the use case, the discharge

efficiency of the battery is 0.875 and the charge efficiency is 0.9.

In Figure 29, the periodic power balance for the prosumer, which has a 400

kW grid power agreement and a 150 kWp solar generation facility, is visualized.

In this scenario, since there is no sale to the grid, the demand of the prosumer

consists of the consumption of the building and the charge of the battery. Demand

is shown on the negative axis of the graph. Meeting the demand is provided from

3 sources. These resources consist of grid, solar generation and battery. As can be

seen in the graph, a demand-supply balance is established in the prosumer bus.

In the pre-battery scenario, electricity would be taken from the grid until ”buying

grid = demand - solar generation”. In the absence of a battery, there would be

no tariff-sensitive structure. And if solar generation is more than demand, it will

be wasted. However, with the battery-integrated scenario, power is drawn from

the grid only during cheap hours. With the electricity purchased from the grid in

cheap hours, the building consumption is met and the battery is charged. During

the daytime and peak tariffs when tariff prices are high, the consumption of the

building is met from solar generation and battery. Thus, the bill is lowered.
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Figure 29: Without Power Selling Prosumer Power Balance.

The prediction methods from Chapter 4 were used to construct the prosumer

models. 4 different prosumers with different consumption and generation profiles

were modeled. Detailed generation and consumption information of prosumers

are given in Table 13. For the pre-battery scenarios, it is seen that the energy

purchased from the grid for profile 11, 12 and 13 end-users increases in a 1-month

period. This is not an expected result considering that the battery increases the

generation usage by storing excess solar generation. Battery efficiency not being

100% increases energy purchase. Despite this, it is seen that the bills of the pro-

sumers decrease. Because the battery, with its energy storage capacity, postpones

the electricity purchased from the grid to the periods when the tariff is cheap.

In profile 14, the power purchased from the grid decreases. The reason for this

is that it has much more solar generation capacity than electricity consumption.

The production, which would be wasted in the pre-battery state, becomes usable

with the battery. For this reason, the recommended battery energy capacity was

much higher than other profiles.

In the absence of a battery, excess generation is wasted. Therefore, it is mean-

ingless to increase the generation potential without battery integration. The self-

consumption value represents how much of the generated energy is consumed in

the prosumer. The self-consumption ratios in Table 13 show how much of the

installed generation capacity of prosumers are able to use. In this scenario, since
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there is no electricity sales to the grid, it is ensured that the self-consumption with

the battery is 100%. The self-sufficiency value represents how much of the energy

consumption is not purchased from the grid. In Profiles 11, 12 and 13, energy

purchase from the grid increased due to battery operating efficiency. Likewise, the

self-sufficiency rates decrease for these three end-users for use-cases with battery

integration. In fact, the self-sufficiency rates for profile 11 and profile 12 drop to

negative. The reason for this is that the energy purchased from the grid is more

than the prosumer consumption.
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6.3.2 With Contract for Power Sale to the Grid

The basic structure of the prosumer model with battery sizing optimization is

visualized in Figure 30. According to this structure, the end-user, which has a

RES sourced electricity generation facility, performs bill management according

to the TOU tariff. The end-user is allowed to sell power to the grid, so it can

consume the generated power, store it in the battery or sell it to the grid.

Figure 30: With Contract for Power Sell Oriented Battery Installation General
Structure

6.3.2.1 Model

This model is the version of the consumer whose production facility is integrated

and can sell electricity to the grid. Therefore, the objective function given in

Equation 28 primarily aims to minimize the bill as in consumer models. However,

unlike the prosumer model in Suubsection 6.3.1, it is possible to sell electricity

to the grid in this prosumer model. In some applications, since bills are paid for

prosumer by monthly set-off method, in this model, the buying and selling prices

are considered equal. While trying to minimize the electricity purchase from the

grid with the relevant TOU tariff period, at the same time, prosumer’s electricity

sales are maximized within the same TOU tariff.
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min

{(
T∑
t

gt.TOUt.∆T −
T∑
t

gsellt .TOUt.∆T

)}
(28)

Unlike all models described so far, in the prosumer model, which can sell to

the grid, there is a two-way exchange with the grid in the power balance equation.

Equation 29 has electricity sold to the grid along with the building’s consumption

and battery charging on the demand side. On the supply side, there is solar

generation, grid and battery discharge.

gt + st + dt.η
discharge = Dt + gsellt + ct, ∀t (29)

Equations such as battery SOE, charge-discharge and physical constraints of

the grid are the same as in Subsection 6.1.1.1.

6.3.2.2 Use-Case Study - 7

Prosumer constructs with features in Subsection 6.3.1 were used to test the algo-

rithms of the prosumer model capable of selling to the grid. Prosumers with the

same consumption profile and generation potential were modeled. Table 14 shows

the generation and consumption details of prosumers. According to the prosumer

models in subsection 6.3.1, the bill before the battery differs. Because according

to the model in Subsection 6.3.1, the electricity generated more than the demand

is wasted. In this model, the excess of the electricity generated is sold to the grid.

The TOU tariff in the relevant generation period was determined as the sales price.

Due to this selling option, the bill is lowered for the pre-battery scenario compared

to the previous prosumer model. Especially for Profile 14, whose installed power

is higher than demand, the bill has dropped to 1/3.

In scenarios with battery integration, the self-consumption is 100%. This

means that all of the electricity generated was consumed by the building and

no sales were made to the grid. In other words, in the 1st prosumer model and

the 2nd prosumer model, the bills after the battery were equal to each other. It
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should be noted that the sell-to-grid strategy will vary with the grid buy-sell pric-

ing. However, the most important output in this model is that the energy stored

during the generation is used for the consumption of the building during the peak

pricing periods. Although there is no sale to the grid with the battery, the bill

decreases. Since the amount of electricity purchased from the grid did not change

for the prosumer models, the self-sufficiency rates did not change either.
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CHAPTER VII

DISCUSSION

Optimal battery sizing is presented for 14 end-users with 7 mathematical models.

It was seen that a battery sizing algorithm can be developed for the consumer,

producer and prosumer with minor changes in the objective function and power

balance equations, along with the limitations of general battery operation.

Two different battery sizing needs were determined for consumers. These needs

are bill management and minimization of transformer losses. End-users who want

to invest in batteries for bill management can benefit from the developed algo-

rithms. However, if the end-user has its own transformer, they can use the battery

sizing algorithm as a decision-support mechanism with the algorithm sensitive to

losses that will occur in the transformer. In the modeled use-case scenarios, it was

seen that battery energy capacities are recommended in the range of 2.4%-9.1% of

monthly energy consumption for consumer bill management. In other words, if a

consumer with any size of consumption will invest in batteries for bill management

purposes, the optimal battery capacity within the scope of the 3-time tariff is 5%

of the monthly consumed energy. It was observed that the power capacity of the

battery is directly proportional to the power of the consumer’s grid agreement.

This is where the value in the consumer’s agreement to draw power from the grid

comes to the fore. Since this value is used as a constraint in the algorithm, the bat-

tery charging power increases depending on the mains power draw. In this study,

grid purchasing power was accepted with a cautious margin above the maximum

demands. Reducing transformer losses in the second consumer model was also

added to the targets. This goal has constrained the battery’s radical power draw

shifting in times of cheap tariffs. Because the optimal loading of the transformer

(depending on the transformer size in the range of 35%-45%) is exceeded by the
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battery’s demand for extreme charging. Thus, it has been calculated that 50% of

transformer losses that will increase due to battery operation can be prevented.

Developed 3 different optimal battery sizing models that producers may need.

These needs have been compiled according to various procurement strategies ap-

plied to RES-sourced generation facilities around the world. In this context, a

model was first developed for production facilities with a purchase guarantee up

to a certain power limit. This model was tested with use-case scenarios for RES

resources of various sizes. It is known that producers with limited power purchase

agreements invest in installed power slightly above the power of the agreement in

order to be able to evaluate the entire purchase guarantee. However, for genera-

tion facilities that do not use batteries, the installed power above the limit power

will be wasted if the weather is efficient. A battery is required both in order not

to waste the installed power potential and to eliminate the uncertainty of RES

sourced generation facilities to some extent. The ratio of recommended battery

energy capacities to monthly energy generation is 4% on average. In addition,

since some wasted periods can be stored and sold during low generaion hours,

monthly energy sales increase with the battery scenario. It was observed that the

recommended battery power capacity for some generation facilities is greater than

the maximum generation power. The reason for this is that the discharge power

is dependent on the grid limit. At the same time, the discharge efficiency also has

an impact on the determination of the battery power capacity.

The second model for generation facilities was developed for generation facili-

ties that guarantee sales in a certain power range. In this model, penalty payment

to the grid was envisaged if the generation facility did not meet the minimum

power limit. The minimum agreement limits were determined as 20% of the in-

stalled power and the maximum power sales limit as 80% of the installed power.

Penalty cost was determined as 10% of the fixed purchase price. With this model,

optimal battery sizing can be made for manufacturers promising a minimum power

supply at certain hours. Thus, the control of generation and shifting of generation
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potential are also ensured. Measures are taken for periodic generation reductions

against clouding and adverse weather conditions. Since the minimum power sup-

ply agreement is considered proportional to the installed power, it increases as the

installed power increases. For this reason, it is seen that the recommended battery

energy capacity increases as the installed power increases. It was observed that

the monthly energy sales volumes increased in TL terms in the range of 22%-54%.

The ratio of the recommended battery power capacities with the minimum power

agreement was calculated as 55% on average.

Within the scope of incentives, production facilities other than fixed price pur-

chase agreements participate in the electricity market like conventional generation

facilities. Another model was developed for generation facilities that will invest

in batteries to plan their operations to join the electricity market. In this model,

it is aimed to discharge during the periods when the market price is low and the

charge is high. Thus, the revenue to be obtained from the sale of electricity is

maximized. Since there is no power supply limit, the power supply to the grid in

these use cases is limited by the transformer size. Transformer sizes were chosen as

standard transformer sizes above the installed power. Since the discharge power of

the battery depends on this limit, all of the transformer power determined as the

constraint was suggested by the algorithm as the battery power capacity. However,

different measures should be taken for problems that may occur in the use of the

entire transformer capacity on the network side. The ratio of the proposed battery

energy capacity to the amount of energy sold after the battery was determined as

12% on average. With the battery integration, which is formed according to the

estimated values of the electricity market price and the results of the optimization

algorithm, the estimated income increase is calculated according to the mobility

of the market price. That’s why revenue growth may seem small. At this point,

the electricity market strategy also gains importance.

2 different use-case scenarios were determined for prosumers. These scenarios

are adapted for end-users who have permission to sell electricity to the grid and
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who do not have permission to sell electricity to the grid. For prosumers who

do not have permission to sell to the grid, batteries allow to consume all of the

energy produced. Since the battery charge and discharge efficiencies are taken into

account in the algorithms, it was observed that the energy purchased from the grid

increased in some scenarios. The greater the installed generation potential, the

less energy purchased from the grid. Although the energy purchased from the

grid increases, the total bill decreases. Because the produced prosumer battery

sizing algorithms ensure that electricity is purchased in the most suitable strategy

for the 3-time TOU tariff. Prosumers who have permission to sell electricity to

the grid consume some of the energy generated and sell some of it to the grid,

according to the scenario without batteries. However, when the battery is included

in the system, the optimization model wants to consume all generation since its

objective function is bill minimization. Battery sizing is affected by 2 components

for prosumers. Both the generation potential and the consumption potential affect

the energy capacity of the battery in particular. Here, the correct sizing of the

generation facility according to consumption also shows its importance.

Optimal battery sizing algorithms was developed for various end-user profiles.

As a data set, there are 1 year generation, consumption and electricity market

prices. However, since consumer bills and electricity sales of generation facilities

are calculated for 1 month in general, 1-month optimization simulations were set

up. Battery sizing based on historical data profiles is an option. However, the

future uncertainty of generation and consumption must also be modeled in some

way. In this study, generation, consumption and electricity market values were

estimated with 3 different neural network models. The estimated data set includes

1-month periodic data sets. In addition to classical methodologies in statistical

models, neural network models have become a popular topic recently. The fact

that their performance is quite strong will give better answers to the estimation

requirements as the strength goes on. Tuning hyper parameters is also becoming a
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separate field of study. In this study, basic structures of single-layer ANN, multi-

layer DNN and LSTM models were used. Both predictions are provided for the

periods ahead of the train set, and the uncertainty factor, which strengthens the

results of the optimization model, is added instead of using the historical data set.

This thesis provided a useful basis for battery sizing applications. In future

studies, it is planned to work on wind production results. However, it is aimed to

modify the algorithms in order to calculate the required battery sizes for multi-

source microgrid self-sufficiency. Applications developed for parking and charging

stations for electric vehicles have become popular recently. It is thought that bat-

tery sizing algorithms can be implemented for self-sufficient parking and charging

stations. Both the extension of the battery sizing algorithms for the mentioned

applications to different areas and the ability to combine all the algorithms with

a single objective function will be worked on.

In this study, an optimal battery sizing approach is proposed for battery in-

vestments. Models meeting different needs were developed for 14 end-users. In

order for these models to fully meet the needs, issues such as budget constraints

were not taken into account. It is provided to suggest battery sizes for the es-

timated future time data using data such as actual generation consumption and

market price. In other words, batteries with the optimal sizes required for end-

users, given their profiles and agreement or installed power, were proposed. Of

course, the budget capacities that come with the investment costs of the batteries

may impose restrictions on these sizes during the investment. In the next period,

it is planned to be developed by using algorithms in real investment projects. In

addition, studies on the effect of estimation algorithms on network investments

and operations are aimed.
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CHAPTER VIII

CONCLUSION

In this thesis, it was aimed to develop a common methodology that can make bat-

tery sizing for consumer, producer, and prosumer. Mathematical models that can

be used for the 3 end-user types was developed with minor changes in the objective

functions and power balance equations. 7 different mathematical algorithms were

tested with 14 different end-user profiles and use-case scenarios. Thanks to these

end-user profiles of varying sizes, the algorithms were found to be suitable for end-

users of all sizes. At the same time, machine learning-based estimation algorithms

were developed for generation, consumption, and electricity market prices, aiming

to increase the reality of optimization models. It is hoped that it will be a useful

study for future BESS investments.
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Cvijić” SASA, vol. 71, no. 1, pp. 43–58, 2021.

[26] A. Gallaher, M. Graziano, and M. Fiaschetti, “Legacy and shockwaves: A
spatial analysis of strengthening resilience of the power grid in Connecticut,”
Energy Policy, vol. 159, p. 112582, Dec. 2021.

[27] “Protecting Electricity Networks from Natural Hazards,” tech. rep., Orga-
nization for Security and Co-operation in Europe, 2016.

[28] A. Jha, L. Preonas, and F. Burlig, “Blackouts in the Developing World:
The Role of Wholesale Electricity Markets,” Working Paper 29610, National
Bureau of Economic Research, Dec. 2021.

[29] G. C. Montanari, “New technologies, grid resiliency and sustainable power:
it is also a matter of electrical apparatus reliability,” in 2021 IEEE Power
Energy Society Innovative Smart Grid Technologies Conference (ISGT),
pp. 1–6, 2021.

[30] E. Hossain, S. Roy, N. Mohammad, N. Nawar, and D. R. Dipta, “Metrics
and enhancement strategies for grid resilience and reliability during natural
disasters,” Applied Energy, vol. 290, p. 116709, May 2021.

[31] H. Badihi, “Smart Grid Resilience,” in Handbook of Smart Energy Systems
(M. Fathi, E. Zio, and P. M. Pardalos, eds.), pp. 1–25, Cham: Springer
International Publishing, 2021.

[32] Z. Alavikia and M. Shabro, “A comprehensive layered approach for imple-
menting internet of things-enabled smart grid: A survey,” Digital Commu-
nications and Networks, Feb. 2022.

75



[33] A. Lang, Y. Wang, C. Feng, E. Stai, and G. Hug, “Data Aggregation Point
Placement for Smart Meters in the Smart Grid,” IEEE Transactions on
Smart Grid, vol. 13, pp. 541–554, Jan. 2022.

[34] S. S. Refaat, O. Ellabban, S. Bayhan, H. Abu-Rub, F. Blaabjerg, and M. M.
Begovic, “Smart Grid Communication Infrastructures,” in Smart Grid and
Enabling Technologies, pp. 217–228, IEEE, 2021.

[35] A. U. Mahin, S. N. Islam, F. Ahmed, and M. F. Hossain, “Measurement and
monitoring of overhead transmission line sag in smart grid: A review,” IET
Generation, Transmission & Distribution, vol. 16, no. 1, pp. 1–18, 2022.

[36] L. Chen, S. Suo, X. Kuang, Y. Cao, and W. Tao, “Secure Ubiquitous Wire-
less Communication Solution for Power Distribution Internet of Things in
Smart Grid,” in 2021 IEEE International Conference on Consumer Elec-
tronics and Computer Engineering (ICCECE), pp. 780–784, Jan. 2021.

[37] P. K. Jena, S. Ghosh, and E. Koley, “Identification of Optimal Sensor Lo-
cation Based on Trade-Off Approach to Improve Resiliency of Electricity
Market in Smart Grid,” IEEE Sensors Journal, vol. 21, pp. 17271–17281,
Aug. 2021.

[38] M. A. A. Sufyan, M. Zuhaib, and M. Rihan, “An investigation on the appli-
cation and challenges for wide area monitoring and control in smart grid,”
Bulletin of Electrical Engineering and Informatics, vol. 10, pp. 580–587, Apr.
2021.

[39] S. A. Hashmi, C. F. Ali, and S. Zafar, “Internet of things and cloud
computing-based energy management system for demand side management
in smart grid,” International Journal of Energy Research, vol. 45, no. 1,
pp. 1007–1022, 2021.

[40] M. A. Judge, A. Manzoor, C. Maple, J. J. P. C. Rodrigues, and S. u. Islam,
“Price-based demand response for household load management with interval
uncertainty,” Energy Reports, vol. 7, pp. 8493–8504, Nov. 2021.

[41] D. Mahmood, N. Javaid, G. Ahmed, S. Khan, and V. Monteiro, “A review on
optimization strategies integrating renewable energy sources focusing uncer-
tainty factor – Paving path to eco-friendly smart cities,” Sustainable Com-
puting: Informatics and Systems, vol. 30, p. 100559, June 2021.

[42] R. Yao, J. Li, B. Zuo, and J. Hu, “Machine learning-based energy efficient
technologies for smart grid,” International Transactions on Electrical Energy
Systems, vol. 31, no. 9, p. e12744, 2021.

[43] Anshuman, G. Kandaperumal, J. Linli, S. Pannala, and A. Srivastava, “RT-
RMS: A Real-Time Resiliency Management System for Operational Decision
Support,” in 2020 52nd North American Power Symposium (NAPS), pp. 1–
6, Apr. 2021.

76



[44] N. Klugman, J. Adkins, E. Paszkiewicz, M. G. Hickman, M. Podolsky,
J. Taneja, and P. Dutta, “Watching the Grid: Utility-Independent Mea-
surements of Electricity Reliability in Accra, Ghana,” in Proceedings of the
20th International Conference on Information Processing in Sensor Net-
works (co-located with CPS-IoT Week 2021), IPSN ’21, (New York, NY,
USA), pp. 341–356, Association for Computing Machinery, May 2021.

[45] Y. Jiang, Y. Yang, S.-C. Tan, and S.-Y. R. Hui, “Distribution Power Loss
Mitigation of Parallel-Connected Distributed Energy Resources in Low-
Voltage DC Microgrids Using a Lagrange Multiplier-Based Adaptive Droop
Control,” IEEE Transactions on Power Electronics, vol. 36, pp. 9105–9118,
Aug. 2021.

[46] J. A. Cortajarena, O. Barambones, P. Alkorta, and J. Cortajarena, “Grid
Frequency and Amplitude Control Using DFIG Wind Turbines in a Smart
Grid,” Mathematics, vol. 9, p. 143, Jan. 2021.

[47] S. Sarker, M. A. Rakib, S. Islam, and S. S. Shafin, “An IoT-based Smart
Grid Technology: Bidirectional Power Flow, Smart Energy Metering, and
Home Automation,” in 2021 International Conference on Maintenance and
Intelligent Asset Management (ICMIAM), pp. 1–6, Dec. 2021.

[48] X. Zhu, B. Liao, and S. Yang, “An optimal incentive policy for residential
prosumers in Chinese distributed photovoltaic market: A Stackelberg game
approach,” Journal of Cleaner Production, vol. 308, p. 127325, July 2021.

[49] N. Martin and J. Rice, “Power outages, climate events and renewable en-
ergy: Reviewing energy storage policy and regulatory options for Australia,”
Renewable and Sustainable Energy Reviews, vol. 137, p. 110617, Mar. 2021.

[50] G. B. Cavadini and L. M. Cook, “Green and cool roof choices integrated
into rooftop solar energy modelling,” Applied Energy, vol. 296, p. 117082,
Aug. 2021.

[51] S. Chen, Z. Li, and W. Li, “Integrating high share of renewable energy into
power system using customer-sited energy storage,” Renewable and Sustain-
able Energy Reviews, vol. 143, p. 110893, June 2021.

[52] A. Razmjoo, M. M. Nezhad, L. G. Kaigutha, M. Marzband, S. Mirjalili,
M. Pazhoohesh, S. Memon, M. A. Ehyaei, and G. Piras, “Investigating
Smart City Development Based on Green Buildings, Electrical Vehicles and
Feasible Indicators,” Sustainability, vol. 13, p. 7808, Jan. 2021.
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Yönetimi,” Avrupa Bilim ve Teknoloji Dergisi, pp. 92–104, Aug. 2020.

[69] K. S. Gayathri and K. S. Easwarakumar, “Intelligent Decision Support Sys-
tem for Dementia Care Through Smart Home,” Procedia Computer Science,
vol. 93, pp. 947–955, Jan. 2016.

[70] I. Machorro-Cano, M. A. Paredes-Valverde, G. Alor-Hernandez, M. del
Pilar Salas-Zárate, M. G. Segura-Ozuna, and J. L. Sánchez-Cervantes,
“PESSHIoT: Smart Platform for Monitoring and Controlling Smart Home
Devices and Sensors,” in Technologies and Innovation (R. Valencia-
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